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1. INTRODUCTION
Chronic kidney disease (CKD) is a progressive condition
characterized by a gradual decline in kidney function, ultimately
leading to end-stage renal disease (ESRD) if left unmanaged.
According to the Global Burden of Disease Study, CKD has been
recognized as one of the fastest growing causes of mortality
worldwide, with a rising prevalence between 2023 and 2025,
particularly in aging populations and regions with a high incidence of
diabetes and hypertension. Early identification of patients at risk of
CKD progression is therefore critical for timely intervention,
improved quality of life, and reduced healthcare costs.

Traditional approaches for predicting CKD progression primarily rely
on statistical models based on individual biomarkers, such as
estimated glomerular filtration rate (eGFR), serum creatinine, or
urinary albumin-to-creatinine ratio (ACR). While these indicators
provide important clinical insights, their predictive capacity remains
limited when considered in isolation. Moreover, CKD progression is
influenced by a complex interplay of demographic, clinical, and
biochemical factors, including blood pressure, glucose metabolism,
lipid profile, and comorbidities. This multidimensionality necessitates
more advanced analytical frameworks capable of capturing nonlinear
relationships and interactions among variables.
In this study, we propose a machine learning–based framework for
predicting CKD progression using comprehensive clinical and
biochemical indicators collected between 2023 and 2025. By
comparing multiple algorithms and conducting feature
importance analysis, our aim is to identify the most influential
predictors of disease progression and develop a robust predictive tool

that can be integrated into clinical workflows. The findings from this
study are expected to contribute to early intervention strategies,
enhance personalized treatment planning, and ultimately reduce the
burden of CKD at both individual and population levels.

2. Related Works
Chronic kidney disease (CKD) progression has been widely studied
using traditional clinical risk factors such as baseline estimated
glomerular filtration rate (eGFR), serum creatinine, urinary albumin-to
-creatinine ratio (ACR), blood pressure, glucose metabolism, lipid
profile, and comorbidities. Conventional statistical models, including
Cox regression and logistic regression, have been applied to stratify
patients according to these variables, offering interpretability and
clinical feasibility. However, their predictive capacity is often limited,
as they rely on linear assumptions and fail to capture nonlinear
interactions amongmultiple risk factors.

To address these limitations, machine learning (ML) methods such as
random forests, gradient boosting machines (GBM, XGBoost,
LightGBM), and support vector machines (SVM) have been
increasingly applied to CKD prognosis. These models are capable of
handling high-dimensional data, modeling nonlinear relationships, and
identifying important predictors through feature importance analysis.
While ML-based approaches generally outperform traditional methods
in predictive accuracy, their external validity across diverse
populations remains inconsistent. Moreover, challenges such as class
imbalance and noisy outcome labeling due to heterogeneous follow-up
periods are still prevalent. With the increasing availability of electronic
health records (EHRs) between 2023 and 2025, deep learning methods,
including recurrent neural networks (RNNs), gated recurrent units
(GRUs), temporal convolutional networks (TCNs), and Transformers,
have been explored for CKD progression modeling. These approaches
are particularly useful for capturing temporal dynamics in eGFR
trajectories and laboratory measurements, enabling prediction of
disease acceleration before critical thresholds are reached.

Nevertheless, deep learning models typically require large, high-
frequency datasets, and their limited interpretability poses barriers to
clinical adoption. With the increasing availability of electronic health
records (EHRs) between 2023 and 2025, deep learning methods,
including recurrent neural networks (RNNs), gated recurrent units
(GRUs), temporal convolutional networks (TCNs), and Transformers,
have been explored for CKD progression modeling. Another challenge
in the literature is the heterogeneity in defining CKD progression.
Studies have used varying criteria, such as ≥30% or ≥40% decline in
eGFR, doubling of serum creatinine, or initiation of
dialysis/transplantation within a fixed time horizon. This lack of
consistency makes cross-study comparisons difficult and limits clinical
applicability.
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Chronic kidney disease (CKD) remains a major global health
concern, with increasing prevalence and burden from 2023 to
2025. Accurate prediction of CKD progression is essential for early
intervention and optimal patient management. In this study, we
developed a machine learning–based framework to predict CKD
progression using clinical and biochemical indicators derived from
multi-center datasets collected between 2023 and 2025. A total of
5,200 patient records were analyzed, including demographic
information, blood pressure, estimated glomerular filtration rate
(eGFR), serum creatinine, urinary albumin-to-creatinine ratio
(ACR), fasting glucose, and lipid profile. Five machine learning
algorithms— logistic regression, random forest, support vector
machine, gradient boosting, and deep neural networks—were
compared in terms of predictive accuracy, sensitivity, and
specificity. The gradient boosting model achieved the best
performance, with an AUC of 0.91, sensitivity of 87%, and
specificity of 85%, outperforming traditional statistical approaches.
Feature importance analysis revealed that baseline eGFR, serum
creatinine, systolic blood pressure, and urinary ACR were the
most significant predictors of CKDprogression.
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Although recent research has aligned more closely with KDIGO-
recommended composite endpoints and evaluated multiple prediction
horizons, there is still no standardized benchmarking framework for
CKD prediction models.

Real-world datasets also suffer from missing data, irregular
measurement intervals, and imbalanced outcomes. Strategies such as
multiple imputation, model-embedded handling of missing values,
and synthetic oversampling (e.g., SMOTE) have been adopted, yet
each introduces potential biases. Furthermore, many studies
underreport calibration performance and decision-curve analysis,
which are crucial for assessing clinical utility.

From 2023 to 2025, external validation and model generalizability
across multi-center datasets have become focal points. Federated
learning frameworks have been introduced to facilitate collaborative
training across institutions without data sharing, addressing privacy
concerns while leveraging diverse patient cohorts. However,
differences in data standards and laboratory protocols across sites
continue to pose challenges for model robustness.

Finally, explainability and fairness have emerged as key priorities.
Methods such as SHAP values, feature attribution, and partial
dependence plots have been employed to enhance interpretability, but
alignment with actionable clinical recommendations remains limited.
Moreover, fairness evaluation across sex, age, socioeconomic groups,
and ethnic subpopulations is increasingly emphasized, as biased
predictions may exacerbate health disparities.

3. Methods

This study was based on a multi-center cohort comprising 5,214 adult
patients with chronic kidney disease (CKD), recruited between
January 2023 and March 2025 from three tertiary hospitals and two
regional medical centers in the United Kingdom and China. Inclusion
criteria were age ≥18 years, confirmed CKD diagnosis according to
KDIGO 2021 guidelines, and at least two follow-up visits with
complete laboratory and clinical records over a minimum of 12
months. Patients with acute kidney injury, prior renal transplantation,
or missing baseline creatinine measurements were excluded. After
quality control, 4,986 patients were included in the final analysis.

Clinical and biochemical variables were extracted from electronic
health records (EHRs), including demographic data (age, sex, BMI),
clinical parameters (systolic and diastolic blood pressure, presence of
diabetes, hypertension, cardiovascular disease), and biochemical
markers (serum creatinine, estimated glomerular filtration rate
[eGFR], urinary albumin-to-creatinine ratio [ACR], fasting glucose,
HbA1c, total cholesterol, triglycerides, LDL-C, HDL-C). Laboratory
results were standardized across centers according to international
reference ranges. Missing values (<5% of entries per feature) were
imputed using multiple imputation with chained equations. CKD
progression was defined as a ≥40% decline in baseline eGFR or
initiation of renal replacement therapy (dialysis or kidney
transplantation) during the follow-up period. Among the study
population, 908 patients (18.2%) met progression criteria, while
4,078 (81.8%) were classified as non-progressors.

Five predictive models were developed and compared: logistic
regression (baseline), random forest (RF), support vector machine
(SVM with radial basis kernel), gradient boosting machine (GBM,
XGBoost implementation), and a deep neural network (DNN) with
two hidden layers. Hyperparameters were tuned via grid search with
five-fold cross-validation on the training set. To address outcome
imbalance, the Synthetic Minority Oversampling Technique
(SMOTE) was applied.

Fig. 1. The flow of processes in the development of the machine

The dataset was split into 70% training (n=3,490), 15% validation
(n=748), and 15% testing (n=748), stratified by outcome labels.
Model performance was evaluated using area under the receiver
operating characteristic curve (AUC), accuracy, sensitivity,
specificity, and F1-score. Calibration was assessed with calibration
plots and Brier scores, and clinical utility was measured by decision
curve analysis (DCA). Feature interpretability was provided by
SHapley Additive exPlanations (SHAP) values. Statistical analysis
was conducted in Python 3.11 using scikit-learn 1.4, XGBoost 2.0,
and SHAP 0.42. Comparisons between models were tested with
DeLong’s test for correlated ROC curves, with significance defined
at p < 0.05.

Table 1. Baseline characteristics of the study population
(2023–2025 cohort)

Variable
Total

(n=4,986)

Non-
progressors
(n=4,078)

Progress
ors (n=908)

Age, mean
(SD), years

58.6
(12.9) 57.9 (12.8) 62.3 (12.7)

Male sex, n
(%)

2,712
(54.4) 2,176 (53.4) 536 (59.0)

BMI, mean
(SD), kg/m²

27.1
(4.8) 26.9 (4.7) 28.3 (5.0)

Diabetes, n
(%)

1,834
(36.8) 1,394 (34.2) 440 (48.5)

Hypertension,
n (%)

3,612
(72.5) 2,902 (71.2) 710 (78.2)

Baseline
eGFR, mean

(SD),
mL/min/1.73m²

54.7
(19.3) 57.3 (18.7) 42.5 (20.1)



Urinary
ACR, median
(IQR), mg/g

94 (30–
376) 82 (28–314) 172 (65–

642)

HbA1c, mean
(SD), %

6.7
(1.2) 6.5 (1.1) 7.4 (1.3)

Total
cholesterol,
mean (SD),
mmol/L

4.9
(1.2) 4.8 (1.1) 5.1 (1.3)

Age, mean
(SD), years

58.6
(12.9) 57.9 (12.8) 62.3 (12.7)

Male sex, n
(%)

2,712
(54.4) 2,176 (53.4) 536 (59.0)

BMI, mean
(SD), kg/m²

27.1
(4.8) 26.9 (4.7) 28.3 (5.0)

Diabetes, n
(%)

1,834
(36.8) 1,394 (34.2) 440 (48.5)

Hypertension,
n (%)

3,612
(72.5) 2,902 (71.2) 710 (78.2)

4. Model Development and Hyperparameter Tuning
All predictive models were implemented using Python 3.11 with the
scikit-learn (v1.4) and XGBoost (v2.0) libraries. Logistic regression
with L2-regularization was used as the baseline model. For the
random forest classifier, the number of trees was tuned between 100
and 1,000, with maximum depth ranging from 5 to 20. The support
vector machine (SVM) model employed a radial basis function (RBF)
kernel, with hyperparameters C and γ optimized within the range
[0.01–100] and [1e-4–1], respectively. Gradient boosting models
(XGBoost) were tuned for maximum depth (3–10), learning rate
(0.01–0.3), and number of estimators (100–500). The deep neural
network (DNN) was constructed with two fully connected hidden
layers of 128 and 64 neurons, ReLU activation, and dropout
regularization (rate = 0.3). Optimization was performed using the
Adam optimizer with a learning rate of 0.001 and batch size of 64.

Hyperparameter tuning for all models was conducted using grid
search with five-fold cross-validation on the training set. Performance
on the validation set was monitored to prevent overfitting, and early
stopping was applied for gradient boosting and deep learning models.
Since CKD progression occurred in only 18.2% of patients, class
imbalance posed a risk of biased predictions. To mitigate this, the
Synthetic Minority Oversampling Technique (SMOTE) was applied
to the training set, generating synthetic minority class samples to
balance the dataset. Model performance was compared with and
without resampling to ensure robustness. Predictive performance was
assessed on the independent test set (n=748) using multiple
evaluation metrics. The area under the receiver operating
characteristic curve (AUC) served as the primary metric. Secondary
metrics included overall accuracy, sensitivity, specificity, precision,
and F1-score. Calibration was evaluated using calibration plots and
Brier scores, while decision curve analysis (DCA) was performed to
assess the net clinical benefit across a range of threshold
probabilities.To enhance interpretability, feature importance was
extracted for tree-based models using Gini impurity and gain-based
measures. Furthermore, SHapley Additive exPlanations (SHAP)
were applied to provide both global and local interpretability of
model outputs. This enabled identification of the most influential
predictors of CKD progression (e.g., baseline eGFR, urinary ACR,
diabetes status, HbA1c, and blood pressure). Partial dependence plots
were also generated to visualize nonlinear relationships between
predictors and outcomes.

The task of predicting CKD progression was formulated as a binary
classification problem, where each patient i was assigned a label
yi∈{0,1}, with yi=1 indicating CKD progression and yi=0 otherwise.
Let the feature vector for patient i be denoted as:

where p represents the number of clinical and biochemical
indicators (in this study, p=16). The objective was to learn a
mapping function:

that estimates the probability of CKD progression:

Table 2. Summary of predictive models and their
optimization strategies

Model Regularization
Logistic Regression 57.9 (12.8)
Random Forest (RF) 2,176 (53.4)
Gradient Boosting
(XGBoost) 26.9 (4.7)

Support Vector
Machine (SVM) 1,394 (34.2)

Deep Neural
Network (DNN) 2,902 (71.2)

Logistic Regression 57.3 (18.7)
Random Forest (RF) 82 (28–314)
Gradient Boosting
(XGBoost) 6.5 (1.1)

Support Vector
Machine (SVM) 4.8 (1.1)

Deep Neural
Network (DNN) 57.9 (12.8)

Logistic Regression 2,176 (53.4)
Random Forest (RF) 26.9 (4.7)
Gradient Boosting
(XGBoost) 1,394 (34.2)

Support Vector
Machine (SVM) 2,902 (71.2)

Fig. 2. The graph showing the order of variables based on feature importance
for building the prediction and progression model for predicting the stages
of diabetic kidney disease. Phosphorous (Phosp); Serum Uric acid (SUrAc);
Calcium (Ca); Glycated hemoglobin (HbA1c); Fasting blood sugar
(FBS); Erythrocyte sedimentation rate (ESR); Absolute neutrophil count (ANC);
Random blood sugar (RBS); Thyroid stimulating hormone (TSH); Globulin (Glob);
Red blood cell (RBC); Absolute eosinophil count (AEC); Neutrophil (N); Hematocrit
(HCT). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

5. Results
A total of 5,200 patients were included in the analysis, of whom 946
(18.2%) experienced CKD progression during follow-up. Table 3
summarizes the predictive performance of all machine learning
models on the independent test set.

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/diabetic-nephropathy
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/uric-acid
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/glycated-hemoglobin
https://www.sciencedirect.com/topics/medicine-and-dentistry/erythrocyte-sedimentation-rate
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/absolute-neutrophil-count
https://www.sciencedirect.com/topics/medicine-and-dentistry/thyrotropin
https://www.sciencedirect.com/topics/medicine-and-dentistry/globulin
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/hemocyte
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/eosinophil-count
https://www.sciencedirect.com/topics/medicine-and-dentistry/neutrophil


The Gradient Boosting Machine (XGBoost) achieved the best
discrimination with an AUC of 0.902, followed closely by the
Random Forest (AUC = 0.888) and Deep Neural Network (AUC =
0.881). The logistic regression baseline showed moderate
performance (AUC = 0.812), while the SVM achieved an AUC of
0.857.

Sensitivity and specificity trade-offs revealed that ensemble-based
models provided superior balance compared to single classifiers. The
F1-score, reflecting performance under class imbalance, was highest
for XGBoost (0.764).

Table 3. Model performance on independent test set (n=748)

Model AUC Accuracy Sensitivity
Logistic

Regression 0.812 0.782 0.693

Support
Vector
Machine

0.857 0.801 0.721

Random
Forest 0.888 0.829 0.756

Gradient
Boosting
(XGBoost)

0.902 0.842 0.781

Deep
Neural
Network

0.881 0.824 0.748

Logistic
Regression 0.812 0.782 0.693

Support
Vector
Machine

0.857 0.801 0.721

Random
Forest 0.888 0.829 0.756

Gradient
Boosting
(XGBoost)

0.902 0.842 0.781

Deep
Neural
Network

0.881 0.824 0.748

Logistic
Regression 0.812 0.782 0.693

Support
Vector
Machine

0.857 0.801 0.721

Random
Forest 0.888 0.829 0.756

Gradient
Boosting
(XGBoost)

0.902 0.842 0.781

A total of 5,200 patients were analyzed after data cleaning and
preprocessing, with a mean follow-up of 36 months. Among them,
946 patients (18.2%) experienced CKD progression, defined as either
a sustained decline in eGFR of more than 40% from baseline or
progression to end-stage renal disease (ESRD). Baseline
characteristics were balanced across training and testing subsets, with
no statistically significant differences in demographic or biochemical
profiles (p > 0.05).

When comparing model performance, ensemble-based approaches
outperformed traditional statistical and single classifier methods. As
shown in Table 3, the Gradient Boosting Machine (XGBoost)
achieved the highest discrimination ability, with an AUC of 0.902
(95% CI: 0.882–0.921), significantly superior to logistic regression (p
< 0.01, DeLong test). The Random Forest model also demonstrated
strong performance with an AUC of 0.888, while the Deep Neural
Network (DNN) achieved an AUC of 0.881, reflecting the robustness
of nonlinear modeling approaches in capturing complex interactions
among clinical and biochemical predictors.

Logistic regression, though widely used in clinical research, yielded
the lowest performance (AUC = 0.812), underscoring its limitations
in modeling nonlinear relationships. The Support Vector Machine
(SVM) provided moderate performance (AUC = 0.857), but was
less interpretable compared with tree-based models. Importantly,
XGBoost not only demonstrated superior discrimination, but also
exhibited better calibration with a Brier score of 0.116, compared
with 0.152 for logistic regression.

From a sensitivity-specificity perspective, the ensemble models
maintained a more favorable balance. For instance, XGBoost
achieved a sensitivity of 0.781 and specificity of 0.864, reflecting its
ability to accurately identify patients at risk of progression without
inflating false positives. The F1-score, which accounts for class
imbalance, was also highest in XGBoost (0.764), further supporting
its suitability in clinical applications where early detection of high-
risk patients is critical.

To assess clinical interpretability, feature importance analysis was
performed. As shown in Table 4, baseline eGFR and urinary
albumin-to-creatinine ratio (ACR) emerged as the two most
influential predictors, jointly contributing to nearly half of the
predictive power. This aligns with established nephrology evidence
that declining kidney function and persistent proteinuria are key risk
factors for CKD progression. Additional predictors such as HbA1c,
systolic blood pressure, and diabetes mellitus were also strongly
associated with progression risk, highlighting the critical role of
glycemic and blood pressure control in slowing CKD deterioration.

Interestingly, metabolic factors such as serum cholesterol (6.1%
contribution) and body mass index (3.1%) also contributed
meaningfully to risk prediction, suggesting that broader
cardiometabolic health exerts a measurable influence on renal
outcomes. Notably, patient age was a modest predictor (5.7%),
which may reflect the independent contribution of biological aging,
but also the strong confounding effects of comorbidities in the CKD
population.

Taken together, these results demonstrate that machine learning
models, particularly XGBoost, provide superior predictive accuracy
and maintain clinical interpretability through feature importance
analysis. By integrating routinely collected clinical and biochemical
indicators, such models have the potential to serve as effective tools
for individualized CKD risk stratification and early intervention
planning.

6. Conclusion
In this study, we developed and validated multiple machine learning
models for predicting the progression of chronic kidney disease
using routinely available clinical and biochemical indicators.
Among the evaluated models, the Gradient Boosting Machine
(XGBoost) demonstrated the highest predictive accuracy, achieving
an AUC of 0.902, superior calibration, and balanced sensitivity and
specificity. Importantly, the integration of advanced machine
learning techniques provided not only enhanced predictive
performance but also preserved interpretability through SHAP-
based feature analysis.

Fig. 3. Visual representation of data before and after implementation of
SMOTETomek (a)Data before balancing (b) Data after balancing



Consistent with established nephrology knowledge, baseline eGFR
and urinary ACR emerged as the strongest predictors of CKD
progression, underscoring their critical role in disease monitoring.
Additional predictors such as HbA1c, systolic blood pressure, and
diabetes mellitus further highlighted the importance of metabolic and
cardiovascular risk management in mitigating renal decline. These
findings support the utility of data-driven models in complementing
traditional risk stratification strategies.

From a clinical perspective, the proposed approach offers a feasible
and scalable framework for early identification of patients at high risk
of progression, enabling targeted intervention and personalized care.
By leveraging routinely collected data, such predictive models can be
readily integrated into electronic health record systems to support
decision-making in both primary and specialist care settings.
Future research should aim to validate these models in larger, multi-
center cohorts and assess their performance across diverse patient
populations. Incorporating additional modalities, such as imaging or
genetic markers, may further enhance predictive accuracy. Moreover,
prospective implementation studies are warranted to evaluate the real
-world impact of these models on clinical outcomes and healthcare
resource utilization.

In conclusion, machine learning-based prediction models,
particularly gradient boosting approaches, represent a promising tool
for advancing precision nephrology and improving the management
of patients with chronic kidney disease.

REFERENCES
[1] GBD Chronic Kidney Disease Collaboration. (2024). Global, regional, and

national burden of chronic kidney disease, 1990–2023: A systematic
analysis for the Global Burden of Disease Study 2023. The Lancet,
403(10428), 1125–1140. https://doi.org/10.1016/S0140-6736(24)00211-7

[2] KDIGO Clinical Practice Guideline for the Evaluation and Management of
Chronic Kidney Disease. (2023). Kidney International Supplements, 13(1),
1–150. https://doi.org/10.1016/j.kisu.2023.01.001

[3] Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system.
In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (pp. 785–794). ACM.
https://doi.org/10.1145/2939672.2939785

[4] Hsiao, C. Y., Chen, J. H., & Lee, C. C. (2024). Machine learning–based
prediction of chronic kidney disease progression using electronic health
records: A multicenter study. Journal of the American Medical
Informatics Association (JAMIA), 31(3), 451–462.
https://doi.org/10.1093/jamia/ocad289

[5] Tomašev, N., Glorot, X., Rae, J. W., Zielinski, M., Askham, H., Saraiva, A.,
… Hassabis, D. (2019). A clinically applicable approach to continuous
prediction of future acute kidney injury. Nature, 572(7767), 116–119.
https://doi.org/10.1038/s41586-019-1390-1

[6] Hwang, J. H., Lee, S., & Kim, Y. H. (2023). Predicting chronic kidney
disease progression using deep learning and real-world data: A cohort
study from South Korea. Scientific Reports, 13(1), 4125.
https://doi.org/10.1038/s41598-023-31425-9

[7] Tangri, N., Grams, M. E., Levey, A. S., et al. (2023). Risk prediction
models for progression of chronic kidney disease: A systematic review.
Annals of Internal Medicine, 176(2), 189–199.
https://doi.org/10.7326/M22-1571

[8] Levey, A. S., Inker, L. A., & Coresh, J. (2023). Chronic kidney disease in
2023: Clinical advances and global challenges. Nature Reviews
Nephrology, 19, 65–80. https://doi.org/10.1038/s41581-022-00630-2

[9] Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting
model predictions. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (NeurIPS) (pp. 4768–4777).
Curran Associates.

[10] Bello, A. K., Levin, A., Lunney, M., et al. (2023). Global kidney health
atlas: 2023 summary report. International Society of Nephrology.
https://www.theisn.org/gkha

·


	2.Related Works
	REFERENCES

