Advances improved quantum genetic algorithms: methods, impact and future challenges

Authors

  • Lucas Apablaza Universidad Técnica Federico Santa María, Departamento de Informática. Av. Santa Maria - 6400 Vitacura, Santiago de Chile (Chile). Author
  • Iván Oyarzun-Rojas Universidad Técnica Federico Santa María, Departamento de Informática. Av. Santa Maria - 6400 Vitacura, Santiago de Chile (Chile). Author
  • Ian Rossi Universidad Técnica Federico Santa María, Departamento de Informática. Av. Santa Maria - 6400 Vitacura, Santiago de Chile (Chile). Author
  • Mauricio Solar Universidad Técnica Federico Santa María, Departamento de Informática. Av. Santa Maria - 6400 Vitacura, Santiago de Chile (Chile). Author

DOI:

https://doi.org/10.52152/mb52ej23

Keywords:

QGA, IQGA, GA, genetic algorithm, Quantum Genetic Algorithm, quantum computing

Abstract

This survey presents a comprehensive analysis of the Improved 
Quantum Genetic Algorithm (IQGA), an interesting way of 
applying quantum computing to genetic algorithms (GAs). The 
study begins with an introduction to the several variants of 
Quantum Genetic Algorithm (QGA), which are widely used in 
different applications of GAs. The article introduces the IQGA 
as a quantum version of the classical GA, detailing how it 
leverages quantum parallelism and superposition to reduce the 
time complexity of the genetic operations, and highlighting 
its crucial role in quantum algorithms. The analysis also 
addresses the mathematical foundations of the IQGA, and 
the key advantages and challenges associated with its use in 
several applications. Finally, it concludes with an exploration 
of the current and potential applications of IQGA and common 
characteristics of several implementations of IQGAs.

Published

2025-11-17

Issue

Section

Research articles